Cardenolides and Cardiac Aglycone from the Stem Bark of Trewia nudiflora

by Qian-Jin Kang^a)^b), Pei-Ji Zhao^a), Hong-Ping He^a), and Yue-Mao Shen^{*a})

 ^a) The State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: +86871 5223111; fax: +86871 5150227; e-mail: yshen@mail.kib.ac.cn)
^b) Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China

Five new cardenolides and one new cardiac aglycone, *i.e.*, (5 α)-sarmentogenin 3-(α -L-rhamnopyranoside) (1), (5 α)-sarmentogenin (2), 11-oxouzarigenin 3-(α -L-rhamnopyranoside) (3), (5 α)-gitoxigenin 3-(α -L-rhamnopyranoside) (4), (5 α)-oleandrigenin 3-(α -L-rhamnopyranoside) (5), and (5 α)-oleandrigenin 3-[β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranoside] (6), together with two known cardenolides, *i.e.*, frugoside (= (3 β ,5 α)-3-[(6-deoxy- β -D-allopyranosyl)oxy]-14,19-dihydroxycard-20(22)-enolide) and (17 α)-ascleposide (= (3 β ,5 α ,17 α)-3-[(6-deoxy- α -D-allopyranosyl)oxy]-14-hydroxycard-20(22)-enolide), were isolated from the stem bark of *Trewia nudiflora* L. (Euphorbiaceae) collected in Xishuangbanna, Yunnan Province, China. Their structures were established by spectroscopic studies. Cardenolides were first found in the genus *Trewia* (Euphorbiaceae).

1. Introduction. – *Trewia nudiflora* L. (Euphorbiaceae) is a tropical plant mainly distributed in India, Malaysia, and the south of China [1], and has been used in folk herb medicines [2]. The seed of *T. nudiflora* is rich in trewiasine and a series of new maytansinoids [3-5]. The seed also contains highly unusual glyceride oil [6], several novel *ent*-atisane diterpenes [7], and pyridinone alkaloids [2]. The occurrence of cardenolides in *T. nudiflora* has not been reported previously. During our investigation on the chemical constituent of *T. nudiflora*, however, a cardiac aglycone and seven cardenolides were isolated from the stem bark. This paper describes the isolation and structural elucidation of these compounds.

2. Results and Discussion. – The AcOEt-soluble fraction of the 85% EtOH extraction from the stem bark of *T. nudiflora* was successively chromatographed over silica gel, *Sephadex LH-20* and *RP-18* to afford the new compounds **1**–**6** besides the known cardenolides frugoside (= $(3\beta,5\alpha)$ -3-[(6-deoxy- β -D-allopyranosyl)oxy]-14,19-dihydroxycard-20(22)-enolide) and (17 α)-ascleposide (= $(3\beta,5\alpha,17\alpha)$ -3-[(6-deoxy- α -D-allopyranosyl)oxy]-14-hydroxycard-20(22)-enolide). The new compounds were very similar to each other according to their ¹H- and ¹³C-NMR spectra (*Tables 1* and 2).

Compound **1** was isolated as an amorphous powder. Its molecular formula was determined to be $C_{29}H_{44}O_9$ by ¹³C-DEPT-NMR and negative-ion FAB-MS (m/z 535 $[M-H]^-$). The ¹H-NMR spectra of **1** revealed the presence of characteristic signals for cardenolide: Further spectral data (¹³C-NMR (*Table 2*), ROESY, HMBC, HMQC, ¹H,¹H-COSY) yielded sufficient data to define the structure of **1** as (5 α)-sarmentogenin 3-(α -L-rhamnopyranoside) (**1**).

^{© 2005} Verlag Helvetica Chimica Acta AG, Zürich

In the ¹H-NMR of **1** (*Table 1*), two angular Me groups at $\delta(H)$ 0.98 and 1.10 (2*s*), a CH₂(21) moiety at $\delta(H)$ 5.25 and 5.30, and an olefinic proton H–C(22) at $\delta(H)$ 6.32 were characteristisc of a cardenolide [8]. The ¹³C-NMR DEPT spectrum (*Table 2*) showed 29 signals, including 3 Me, 9 CH₂, 12 CH, and 5 quaternary C-atoms (including one lactonic C=O). The ¹H- and ¹³C-NMR spectra of **1** were very similar to those of affinoside S-IX [8], except for the signal of C(19) shifted upfield to $\delta(C)$ 12.5. Comparing the ¹³C-NMR data of **1** with those of affinoside S-IX and uzarigenin 3-sulfate [9] suggested that H–C(5) of **1** was located on the α -side. In addition, the ROSEY plot showed the ¹H,¹H correlations $\delta(H)$ 4.07–4.10 (H–C(11))/1.10 (Me(18)) and 0.98 (Me(19)), suggesting that H–C(11) was on the β -side (*Fig.*). The ¹H,¹³C-HMBC spectra exhibited along-range correlation of the anomeric H–C(1') ($\delta(H)$ 5.51) with C(3) ($\delta(C)$ 75.8), indicating that the sugar unit was linked to C(3) (*Fig.*). The ¹³C-NMR data of the sugar moiety revealed the presence of a substituted α -L-rhamnopyranose unit from the signals at $\delta(C)$ 99.5 (C(1')), 72.9 (C(2')), 73.0 (C(3')), 74.2 (C(4')), 69.8 (C(5')), and 18.7 (C(6')), and the α -L-configuration was deduced from the anomeric H–C(1') signal at $\delta(H)$ 5.51 with a J of 1.0 Hz and the C(5') signal at $\delta(C)$ 69.8 [10][11].

Figure. Key HMBC (\rightarrow) and NOESY (\leftrightarrow) correlations for **1** and **6**

Compound **2** was obtained as white powder. Its molecular formula was deduced as $C_{23}H_{34}O_5$ on the basis of ¹³C-DEPT-NMR and positive-ion EI-MS data, which showed a peak at m/z 372 ($[M-H_2O]^+$). The ¹H- and ¹³C-NMR data of **2** (*Tables 1* and 2) were similar to those of uzarigenin 3-sulfate [9] and the aglycone moiety of **1**. So the structure of **2** was determined to be (5 α)-sarmentogenin (**2**).

Helvetica Chimica Acta – Vol. 88 (2005)

Table 1. ¹ H-NMR Data for Co	<i>compounds</i> $1-8 \delta$ in ppm, J	in Hz.
---	---	--------

	1 ^a) ^b)	2 ^a) ^b)	3 ^a) ^c)	4 ^c) ^d)	5 ^c) ^d)	6 ^c)
CH (1)	1 /1 1 /8 (m)	1 45 1 52 (m)	1.06 1.11 (m)	1.00 1.05 (m)	0.85 0.03 (m)	$\frac{105}{105}$ 112 (m)
$CI1_{2}(1)$	1.41 - 1.40 (m), 3 10 3 14 (m)	1.43 - 1.32 (m), 3 14 3 18 (m)	1.00-1.11 (m), 2.50 2.61 (m)	1.00 - 1.03 (m), 1.66 1.60 (m)	0.85 - 0.95 (m), 1 75 1 70 (m)	$1.03 - 1.12 \ (m),$ 1.76 1.70 (m)
CH(2)	5.10-5.14(m)	3.14 - 3.18 (m)	2.59 - 2.01 (m)	1.00 - 1.09 (m) 1.32 + 1.30 (m)	1.75 - 1.79 (m) 1.28 1.36 (m)	1.70 - 1.79 (m) 1.36 1.40 (m)
$CI1_{2}(2)$	1.03 - 1.74 (m), 2 03 2 08 (m)	1.00 - 1.00 (m), 2.02 2.06 (m)	1.04 - 1.09 (m), 1.06 1.08 (m)	1.52 - 1.59 (m), 1 50 1 55 (m)	1.20 - 1.50 (m), 1.52 - 1.55 (m)	$1.50-1.40 \ (m),$ 1.53 1.58 (m)
$\mathbf{H} C(2)$	2.03 - 2.08 (m)	2.02 - 2.00 (m)	1.90 - 1.98 (m)	1.39 - 1.33 (m)	1.32 - 1.33 (m)	1.55 - 1.56 (m)
$\Pi = C(3)$	3.60 - 3.66 (m) 1.26 1.22 (m)	5.92 - 5.90 (m) 1 22 1 20 (m)	5.74 - 5.80 (m) 1.18 1.24 (m)	5.34 - 5.37 (m) 1.26 1.20 (m)	5.51 - 5.55 (m) 1 22 1 20 (m)	5.57 - 5.02 (m)
$C\Pi_{2}(4)$	1.20 - 1.55 (m), 1.65 - 1.72 (m)	1.23 - 1.29 (m), 1.64 - 1.70 (m)	1.16 - 1.24 (m),	1.20 - 1.50 (m), 1.50 1.55 (m)	1.23 - 1.29 (m), 1.52 - 1.55 (m)	1.21 - 1.23 (m), 1.52 - 1.58 (m)
$\mathbf{U} = \mathbf{C}(\mathbf{f})$	1.03 - 1.75 (m)	1.04 - 1.70 (m)	1.04 - 1.09 (m)	1.30 - 1.33 (m)	1.32 - 1.33 (m)	1.35 - 1.38 (m)
H = C(5)	1.05 - 1.10 (m)	1.06 - 1.11 (m) 1.22 - 1.28 (m)	0.89 - 0.94 (m)	1.03 - 1.08 (m)	0.83 - 0.90 (m)	1.07 - 1.12 (m)
$CH_2(0)$	1.14 - 1.19(m),	1.55 - 1.58 (m),	1.11 - 1.19(m),	-	-	-
CII (7)	1.28 - 1.55 (m) 1.17 1.22 (m)	1.16 - 1.23 (m)	1.29 - 1.33 (m) 1.20 1.22 (m)			
$CH_2(7)$	1.17 - 1.22 (m),	1.16 - 1.23 (m),	1.29 - 1.33 (m),	-	-	-
TT (2)(2)	2.36 - 2.39(m)	2.38 - 2.40 (m)	2.36 - 2.39(m)			
H-C(8)	1.78 - 1.84(m)	1.81 - 1.87 (m)	2.19 - 2.23 (m)	1.49 - 1.55 (m)	1.52 - 1.55 (m)	1.53 - 1.58(m)
H–C(9)	1.28 - 1.33 (m)	1.33 - 1.38(m)	1.96 - 1.98 (m)	1.03 - 1.08 (m)	0.8/-0.95(m)	0.95 - 1.04 (m)
H-C(11) or	4.07 - 4.10(m)	4.13 - 4.16(m)	-	0.86 - 0.94 (m),	0.85 - 0.90 (m),	0.86 - 0.91 (m),
$CH_2(11)$				1.32 - 1.38(m)	1.28 - 1.36 (m)	1.32 - 1.40 (m)
$CH_{2}(12)$	1.84 - 1.92 (m),	1.84 - 1.89 (m),	2.19-2.23 (m),	1.32 - 1.38 (m),	1.28 - 1.36 (m),	$1.32 - 1.40 \ (m),$
	1.92 - 1.97(m)	1.92 - 1.97 (m)	2.46 - 2.48 (m)	1.49 - 1.55 (m)	1.52 - 1.55 (m)	1.53 - 1.58 (m)
$CH_{2}(15)$	1.89 - 1.96 (m),	1.89 - 1.96 (m),	$2.05 - 2.11 \ (m),$	1.76 - 1.82 (m),	1.75 - 1.79 (m),	1.76 - 1.79 (m),
	2.17 - 2.22 (m)	2.13 - 2.21 (m)	2.36 - 2.39(m)	2.53 - 2.57 (m)	2.66-2.72(m)	2.69 - 2.75(m)
H–C(16) or	1.92 - 1.97 (m),	$1.94 - 1.20 \ (m),$	2.05 - 2.11 (m),	4.59 - 4.63 (m)	5.44 - 5.48 (m)	5.44 - 5.46 (m)
$CH_2(16)$	2.03 - 2.08(m)	2.04–2.10 (<i>m</i>)	2.05–2.11 (<i>m</i>)			
H–C(17)	2.90–2.93 (<i>m</i>)	2.91–2.94 (<i>m</i>)	2.73–2.74 (<i>m</i>)	3.30–3.34 <i>(m)</i>	3.12–3.18 (<i>m</i>)	3.20-3.25 (<i>m</i>)
Me(18)	1.10 (s)	1.06(s)	1.03(s)	0.82(s)	0.83(s)	0.94(s)
Me(19)	0.98(s)	1.11(s)	1.03(s)	0.92(s)	0.89(s)	0.83(s)
CH ₂ (20)	5.25 (dd,	5.26 (br. s),	5.00 (dd,	5.11 (dd,	4.82 (dd,	4.81 (br. s),
	J = 18.1, 1.5),	5.30 (br. s)	J = 18.1, 1.4),	J = 17.3, 1.6),	J = 16.0, 1.6),	4.98 (br. s)
	5.30 (dd)		5.17 (dd)	5.14 (dd)	4.96 (dd)	
H–C(22)	6.32(s)	6.10 (s)	6.14 (s)	5.93 (s)	5.97 (s)	5.97 (s)
Ac					1.93(s)	1.93(s)
Sugar moieties						
H-C(1')	5.51 (d, J = 1.0)		5.48 (br. s)	4.82 (d, J = 1.3)	4.83 (br. s)	4.82 (br. s)
H-C(2')	4.51 (d, J=3.4)		4.50-4.53(m)	3.72 - 3.73 (m)	3.27 - 3.31 (m)	3.25 - 3.31 (m)
H-C(3')	4.55 (d, J = 4.8)		4.50-4.53(m)	3.55 - 3.57(m)	3.73 (d, J = 1.6)	3.84 - 3.87 (m)
H-C(4')	4.30-4.35(m)		4.28 (br. s)	3.30 (br. s)	3.62 - 3.64 (m)	3.57 - 3.62 (m)
H-C(5')	4.29–4.33 (<i>m</i>)		4.28 (br. s)	3.62 - 3.65(m)	3.62 - 3.64 (m)	3.68–3.71 (<i>m</i>)
Me-C(6')	1.66 (d, J = 5.6)		1.68 (d, J = 5.3)	1.22 (d, J = 6.3)	1.24 (d, J = 6.3)	1.32(d, J = 6.1)
H–C(1")						4.57 (d, J = 7.8)
H–C(2")						3.20-3.28 (<i>m</i>)
H–C(3")						3.20-3.28 (<i>m</i>)
H–C(4")						3.69 (br. s)
H-C(5")						3.34-3.37 (<i>m</i>)
CH ₂ (6")						3.57-3.62 (<i>m</i>),
						3.84-3.87 (m)
->	b) + , (00.1 (7)					

 $^{\rm a})$ In (D5)pyridine. $^{\rm b})$ At 400 MHz. $^{\rm c})$ At 500 MHz. $^{\rm d})$ In MeOD.

Helvetica Chimica Acta – Vol. 88 (2005)

	1 ^a) ^b)	2 ^a) ^b)	3 ^a) ^c)	4 ^c) ^d)	5 ^c) ^d)	6 ^b) ^d)
C(1)	39.6 (t)	39.8 (t)	36.6 (t)	38.3 (t)	38.2 (t)	38.2 (t)
C(2)	30.3 (t)	32.9 (t)	29.6 (t)	30.4 (t)	30.8 (t)	30.3 (t)
C(3)	75.8 (d)	70.5(d)	75.5(d)	77.3 (d)	77.2(d)	77.3 (d)
C(4)	35.2 (t)	33.6 (t)	34.1 (t)	35.2 (t)	35.1 (t)	35.1 (t)
C(5)	45.1 (d)	45.6 (d)	44.5 (d)	45.6(d)	45.5 (d)	45.4 (d)
C(6)	29.7 (t)	29.8 (t)	28.6(t)	29.9 (t)	29.8 (t)	29.8 (t)
C(7)	28.4(t)	28.5(t)	28.6 (t)	28.6 (t)	28.3(t)	28.3 (t)
C(8)	41.4(d)	41.4(d)	43.1 (<i>d</i>)	42.7(d)	42.5(d)	42.5 (d)
C(9)	55.7 (d)	55.8 (d)	60.3(d)	51.0(d)	50.8(d)	50.8 (d)
C(10)	37.9 (s)	37.9(s)	36.2(s)	37.0 (s)	36.9 (s)	36.9 (s)
C(11)	67.8 (d)	67.9 (d)	209.6 (d)	22.0(d)	22.0(t)	21.9 (t)
C(12)	50.3 (t)	50.7(t)	55.1 (t)	40.9 (t)	39.9 (t)	39.9 (t)
C(13)	51.2(s)	50.3(s)	53.3 (s)	51.3 (s)	51.4(s)	51.4 (s)
C(14)	84.2 (s)	84.2 (s)	83.4 (s)	85.5 (s)	84.8 (s)	83.6 (s)
C(15)	33.6 (t)	32.9(t)	33.5(t)	43.7 (t)	41.3(t)	41.3 (t)
C(16)	27.3(t)	27.3(t)	27.1(t)	73.1(d)	75.9 (d)	76.1 (d)
C(17)	50.6 (d)	51.3(d)	50.2(d)	59.6 (d)	57.4 (d)	57.3 (d)
C(18)	17.3(q)	17.6(q)	17.7(q)	17.1(q)	16.4(q)	16.4(q)
C(19)	12.5(q)	12.7(q)	12.5(q)	12.5(q)	12.5(q)	12.5(q)
C(20)	175.5(s)	175.5(s)	174.2(s)	173.6(s)	171.6(s)	171.6 (s)
C(21)	73.8(t)	73.8(t)	73.6(t)	77.8(t)	77.5(t)	77.6 (t)
C(22)	117.8(d)	117.8(d)	118.2(d)	120.6(d)	121.8(d)	121.8(d)
C(23)	174.5 (s)	174.5 (s)	173.8 (s)	177.3 (s)	172.1(s)	172.1 (s)
Ac	. ,				176.5 (s),	176.8 (s).
					20.9(q)	20.9(q)
Sugar moieties						
C(1')	99.5 (d)		99.5 (d)	99.7 (d)	99.6 (d)	99.5 (d)
C(2')	72.9(d)		72.9(d)	72.5(d)	72.4(d)	71.4(d)
C(3')	73.0(d)		72.9(d)	72.8(d)	72.8(d)	72.4(d)
C(4')	74.2(d)		74.2(d)	74.5 (d)	74.1(d)	83.6 (d)
C(5')	69.8(d)		69.9(d)	69.9(d)	69.8(d)	68.5 (d)
C(6')	18.7(q)		18.7(q)	18.0(q)	18.0(q)	18.1(q)
C(1")						105.7 (d)
C(2")						75.9 (d)
C(3")						78.1(d)
C(4")						72.6(d)
C(5")						78.1 (d)
C(6'')						62.7 (t)

Table 2. ¹³C-NMR Data for Compounds 1-8. δ in ppm.

Compound **3**, colorless crystals (from MeOH), had the molecular formula $C_{29}H_{42}O_9$ as determined by HR-ESI-MS (m/z 557.2735 ($[M+Na]^+$). The ¹H- and ¹³C-NMR (*Tables 1* and 2), HMQC, HMBC, and ¹H,¹H-COSY data and comparison with those of **1** determined compound **3** to be 11-oxouzarigenin 3-(α -L-rhamnopyranoside) (**3**).

The ¹³C-NMR spectra of **3** showed 29 peaks. Its ¹H- and ¹³C-NMR data were similar to those of **1**, except for the presence of a carbonyl signal at $\delta(C)$ 209.6 (C(11)). The HMBC correlation $\delta(H)$ 2.46–2.48 (H–C(12))/ $\delta(C)$ 209.6 (C(11)) supported that OH–C(11) of **1** was oxidized to a C=O group in **3**. In addition, the HMBC correlations between the anomeric H–C(1') of **3** at $\delta(H)$ 5.48 and C(3) at $\delta(C)$ 75.5 (*d*) confirmed that the sugar moiety was attached to C(3), and the sugar unit of **3** was the same as in **1**.

2784

Compound 4, isolated as a white powder, was established to have the molecular formula $C_{29}H_{44}O_9$ by FAB-MS (m/z 535 [M - H]⁻) and ¹³C-DEPT-NMR data. The ¹H- and ¹³C-NMR spectra of 4 (*Tables 1* and 2) were very similar to those of 1, except for an OH group that was linked to C(16) in 4 by comparison with 1 and strospeside [12], a gitoxigenin glycoside. So the structure of 4 was determined to be (5 α)-gitoxigenin 3-(α -Lrhamnopyranoside) (4).

Compound **5** was isolated as white powder. Its molecular formula was determined to be $C_{31}H_{46}O_{10}$ by the HR-ESI-MS, which showed a quasi-molecular peak at m/z 577.3011 ($[M-H]^-$). The structure of **5** was assigned to be that of (5 α)-oleandrigenin 3-(α -L-rhamnopyranoside) (**5**) by comparison of its ¹H- and ¹³C-NMR data (*Tables 1* and 2) with those of **4** and (5 α)-oleandrigenin glycosides [13].

The ¹H-NMR spectra of **5** (*Table 1*) displayed 4 Me signals at δ (H) 0.83 (*s*), 0.89 (*s*), 1.24 (*d*, *J*=6.3), and 1.93 (*s*). The signal *s* at δ (H) 1.93 arose from a Me group linked to a C=O group because of its signal at lower field. Comparison of the ¹H- and ¹³C-NMR data (*Table 2*) of **5** with those of **4** and (5 α)-oleandrigenin glycoside [13] established that OH–C(16) of **4** was acetylated in **5**. The sugar unit was the same as that of **1** (see ¹³C-NMR data).

Compound **6** was found to posses the molecular formula $C_{37}H_{56}O_{15}$ by negative-ion HR-ESI-MS (m/z 739.3548 ($[M-H]^-$), which was confirmed by the FAB-MS (m/z 739 ($[M-H]^-$) and ¹³C-DEPT-NMR data. The aglycone moiety was the same as that of compound **5**. The ¹H- and ¹³C-NMR (*Tables 1* and 2), HMBC and ROSEY (*Fig.*) and ¹H,¹H-COSY data and comparison with those of cryptostigmin II [10] determined the structure of **6** to be (5α)-oleandrigenin 3-[$O-\beta$ -D-glucopyranosyl-($1 \rightarrow 4$)- α -L-rhamnopyranoside] (**6**).

The ¹³C-NMR signals of the sugar moiety of **6** revealed the presence of a terminal β -D-glucopyranose unit in addition to an α -L-rhamnopyranose unit with the signals at $\delta(C)$ 99.5 (C(1')), 71.4 (C(2')), 72.4 (C(3')), 83.6 (C(4')), 68.5 (C(5')), and 18.1 (C(6')). The downfield shift of the C(4') signal to $\delta(C)$ 83.6 as compared to the corresponding signal of **1** and **3–5** indicated the 1 \rightarrow 4 linkage between the terminal glucose and the internal rhamnose unit. The β -D-form of the glucopyranose unit was determined by the *d* of the anomeric H–C(1'') at $\delta(H)$ 4.57 (*d*, *J*=7.8), while the α -L-configuration of the rhamnose unit was established from the upfield shift of its C(5') at $\delta(C)$ 68.5. The HMBC plot displayed correlations between H–C(3) and C(1') of the rhamnopyranose unit (*Fig.*) [9][10].

This work was partially supported by a grant of the *National Science Fund for Distinguished Young Scholars* to *Y.-M. Shen* (30325044) and by the *National Natural Science Foundation of China* (30430020). The authors are grateful to the analytical group of the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, for measuring NMR and MS data.

Experiment Part

1. General. TLC: precoated plates (Si gel G) from Qingdao Marine Chemical Factory, Qingdao, P. R. China. Column chromatography (CC): silica gel (200–300 mesh) from Qingdao Marine Chemical Factory, reversed-phase C_{18} silica gel from Merk, Sephadex-LH-20 from Amershan Bioscience. Optical rotations: Jasco DIP-370 digital polarmeter; MeOH soln. NMR Spectra: Inova-400 and Bruker AM-400 or DRX-500 spectrometers; SiMe₄ as internal standards, δ in ppm, J in Hz. MS: VG-Auto-Spec-3000 and Thermo-Finnigan LCQ-Advantage spectrometer; in m/z (rel.%).

2. *Plant Material.* The stem bark of *Trewia nudiflora* was collected in Xishuangbanna, Yunnan Province, P. R. China. A voucher specimen (No. 20159, K. M. Feng) is deposited in the Herbarium of the Kunming Institute of Botany, Chinese Academy of Science.

3. Extraction and Isolation. The air-dried stem bark of Trewia nudiflora (8.8 kg) was ground and extracted with 80% EtOH (4×) at r.t. After evaporation, the residues were suspended in H₂O and then extracted successively with petroleum ether and AcOEt. The AcOEt extract was subjected to CC (silica gel, CHCl₃, CHCl₃/ MeOH, MeOH) to give Fractions Et.1–Et.8. Fr. Et.1 was subjected to CC (silica gel, CHCl₃/Me₂O 10:1): **2** (8 mg). Fr. Et.3 was further separated into Fr. Et.3.1–Et.3.8. Fr. Et.3.2 was subjected to CC (silica gel, AcOEt/ MeOH 100:6): frugoside (10 mg). Fr. Et.3.3 was subjected to CC (silica gel, AcOEt/MeOH 100:8) and then purified by CC (Sephadex LH-20, MeOH): **5** (5 mg) and **6** (9 mg). Fr. Et.3.5 was separated by CC (Sephadex LH-20, MeOH): **5** (5 mg) and **6** (9 mg). Fr. Et.3.5.2. Fr. Et.3.5.1 was recrystallized from MeOH: **3** (10 mg). Fr. Et.3.5.2 was further purified by CC (silica gel AcOEt/MeOH 100:2): **4** (5 mg). Fr. Et.3.6 was subjected to CC (silica gel CHCl₃/MeOH 9:1) and then purified by CC (C_{18} , MeOH/H₂O 45:55): **1** (15 mg). Fr. Et.3.7 was subjected to CC (silica gel CHCl₃/Me₂O 3:2): (17 α)-ascleposide (10 mg).

(5α)-Sarmentogenin 3-(α-L-Rhamnopyranoside) (= $(3\beta,5\alpha,11\alpha)$ -3-[(6-Deoxy-α-L-mannopyranosyl)oxy]-11, 14-dihydroxycard-20(22)-enolide; **1**): Amorphous powder. $[\alpha]_D^{20} = -5.2$ (c = 0.42, C_5H_5N). ¹H- and ¹³C-NMR: Tables 1 and 2. FAB-MS: 535 (100, $[M-H]^-$).

(5a)-Sarmentogenin (= $(3\beta, 5\alpha, 11a)$ -3,11,14-Trihydroxycard-20(22)-enolide; **2**): White powder. $[a]_D^{20} = +8.0$ (c=0.30, C_5H_3N). ¹H- and ¹³C-NMR: Tables 1 and 2. EI-MS: 372 (14, $[M-H_2O]^+$).

11-Oxouzarigenin 3-(α -L-Rhamnopyranoside) (=(3 β ,5 α)-3-[(6-Deoxy- α -L-mannopyranosyl)oxy]-14-hydroxy-11-oxocard-20(22)-enolide; **3**): Colorless crystal (from MeOH). M.p. 262°. [a]_D²⁰ = -55.2 (c=0.29, MeOH). ESI-MS: 579 (100, [M+HCOOH]⁻), 535 (35, [M+H]⁺). HR-ESI-MS: 557.2735 ([M+Na]⁺; calc. 557.2726).

(5a)-Gitoxigenine 3-(α -L-Rhamnopyranoside) (= (3 β ,5 α ,16 β)-3-[(6-Deoxy- α -L-mannopyranosyl)oxy]-14, 16-dihydroxycard-20(22)-enolide; **4**): White powder. [α]_D²⁰ = -9.4 (c = 0.47, C₅H₅N). ¹H- and ¹³C-NMR: Tables 1 and 2. FAB-MS: 535 (27, [M – H⁻).

(5*a*)-Oleandrigenin 3-(*a*-L-Rhamnopyranoside) (= $(3\beta,5\alpha,16\beta)$ -16-(Acetyloxy)-3-[(6-deoxy-*a*-L-mannopyranosyl)oxy]-14-hydroxycard-20(22)-enolide; **5**). White powder. M.p. 262°. $[a]_D^{20} = -66.7$ (c = 0.24, MeOH). FAB-MS: 577 (46, $[M - H]^-$). HR-ESI-MS: 577.3011 ($[M - H]^-$; calc. 557.3012).

(5*a*)-Oleandrigenin 3-[O- β -D-Glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranoside] (= (3 β ,5 α ,16 β)-16-(Acetyloxy)-3-{[O- β -D-glucopyranosyl-(1 \rightarrow 4)-6-deoxy- α -L-mannopyranosyl]oxy]-14-hydroxycard-20(22)-enolide; **6**). Amorphous powder. [a]₂₀²⁰ = - 76.0 (c = 0.32, MeOH). FAB-MS: 739 (100, [M – H]⁻). HR-ESI-MS: 739.3548 ([M – H]⁻; calc. 739.3540).

Frugoside [14]: White powder. ¹³C-NMR (100 MHz, MeOD): 35.7 (C(1)); 30.8 (C(2)); 74.2 (C(3)); 32.8 (C(4)); 45.9 (C(5)); 29.5 (C(6)); 28.7 (C(7)); 43.1 (C(8)); 51.5 (C(9)); 40.6 (C(10)); 24.0 (C(11); 41.5 (C(12)); 51.2 (C(13)); 86.5 (C(14)); 33.4 (C(15)); 28.1 (C(16)); 52.2 (C(17)); 16.5 (C(18)); 60.0 (C(19)); 177.3 (C(20)); 75.4 (C(21)); 117.8 (C(22)); 178.5 (C(23)); 99.8 (C(1')); 72.5 (C(2')); 72.9 (C(3')); 77.4 (C(4')); 69.9 (C(5')); 18.0 (C(6')); data in accord with frugoside the published ones [14]. FAB-MS: 536 (100, $[M - H]^{-}$).

 $\begin{array}{l} (17a)-Asclepioside \ [15]: \ Amorphous \ powder. \ ^{13}C-NMR \ (100\ MHz; \ MeOD): 38.3 \ (C(1)); \ 30.4 \ (C(2)); \ 77.2 \\ (C(3)); \ 34.1 \ (C(4)); \ 45.6 \ (C(5)); \ 30.0 \ (C(6)); \ 28.7 \ (C(7)); \ 42.5 \ (C(8)); \ 51.1 \ (C(9)); \ 37.5 \ (C(10)); \ 22.5 \ (C(11)); \\ 40.8 \ (C(12)); \ 51.0 \ (C(13)); \ 86.3 \ (C(14)); \ 35.2 \ (C(15)); \ 28.0 \ (C(16)); \ 52.0 \ (C(17)); \ 16.4 \ (C(18)); \ 12.5 \ (C(19)); \\ 178.4 \ (C(20)); \ 75.3 \ (C(21)); \ 117.8 \ (C(22)); \ 177.2 \ (C(23)); \ 99.6 \ (C(1')); \ 72.4 \ (C(2')); \ 72.8 \ (C(3')); \ 74.1 \ (C(4')); \\ 69.8 \ (C(5')); \ 18.0 \ (C(6')); \ data \ in \ accord \ with \ published \ ones \ [15]. \ ESI-MS: \ 521 \ (100, \ [M+H]^+). \end{array}$

REFERENCES

- [1] B. J. Li, C. Wan, X. K. Xu, Acta Botanica Yunnanica 1991, 13, 432.
- [2] S. N. Ganguly, Phytochemistry 1970, 9, 1667.
- [3] R. G. Powell, D. Weisleder, C. R. Smith, J. Org. Chem. 1981, 46, 4398.
- [4] R. G. Powell, D. Weisleder, C. R. Smith, J. Kozlowski, W. K. Rohwedder, J. Am. Chem. Soc. 1982, 104, 4929.
- [5] R. G. Powell, C. R. Smith, R. D. Plattner, B. E. Jones, J. Nat. Prod. 1983, 46, 660.
- [6] M. J. Chisholm, C. Y. Hopkins, J. Am. Oil Chem. Soc. 1996, 43, 390.
- [7] Z. Z. Du, H. P. He, B. Wu, Y. M. Shen, X. J. Hao, Helv. Chim. Acta 2004, 87, 758.
- [8] R. Hanada, F. Abe, Y. Mori, T. Tamauchi, Phytochemistry 1992, 31, 3547.
- [9] G. F. Pauli, U. Matthiesen, F. R. Fronczek, Phytochemistry 1999, 52, 1075.

Helvetica Chimica Acta - Vol. 88 (2005)

- [10] M. S. Kamel, M. H. Assaf, Y. Abe, K. Ohtani, R. Kasai, K. Yamasaki, Phytochemistry 2001, 58, 537.
- [11] R. Kasai, M. Okihara, J. Asakawa, K. Mizutani, O. Tanaka, Tetrahedron 1979, 35, 1427.
- [12] T. Yamauchi, F. Abe, Chem. Pharm. Bull. 1990, 38, 669.
- [13] R. Hanada, F. Abe, T. Yamauchi, Phytochemistry 1992, 31, 3183.
- [14] F. Kiuchi, Y. Fukao, T. Maruyama, T. Obata, M. Tanaka, T. Sasaki, M. Mikage, M. E. Haque, Y. Tsuda, *Chem. Pharm. Bull.* **1998**, 46, 528.
- [15] T. Warashina, T. Noro, Phytochemistry 1994, 37, 801.

Received May 19, 2005